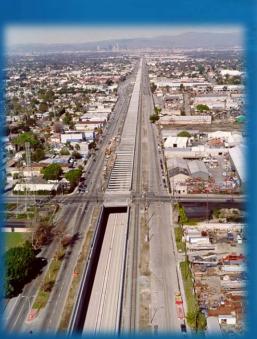


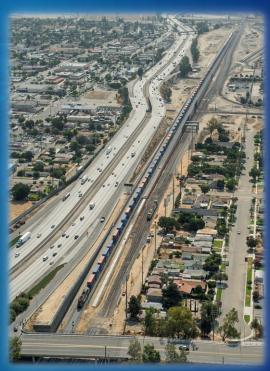
Moving Today's Cargo Volumes

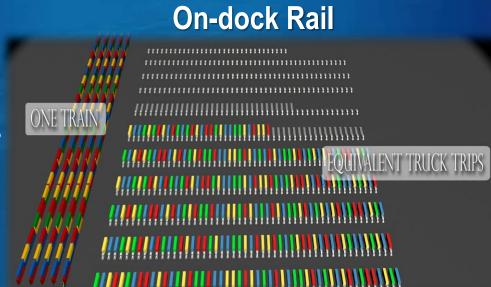
Michael Leue

PARSONS

Cargo Demand

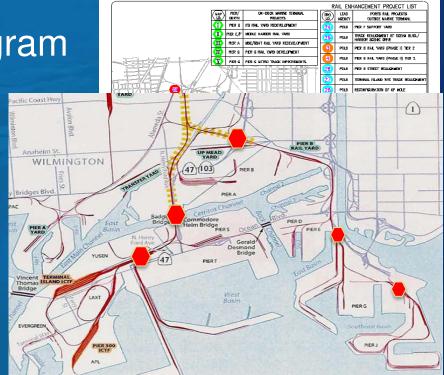





Railroad Connection

Rail is Key to Port of the Future

- Green Port Policy
- Clean Air Action Plan
- Emission Reduction Program
- Tier 3+ Switching Locomotives
- CARB/EPA Compliant Class I



Industry Leading On-dock

\$2B Rail Enhancement Program

- On-dock Rail Yards
- Support Rail Yards
- Rail Network Infrastructure

Rail Modeling

- Intermodal Yard
 - MPC Model
 - Simulation
- Network Performance
 - Track Utilization
 - -RTC

Rail Yard Access

- Lead Length
 - arrival/departure
- Yard Protection
- Mainline Protection

Wide-Span Gantry Cranes

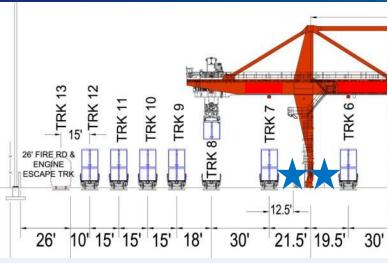
On-dock Projects

Middle Harbor Terminal

- Long Beach Container Terminal
- \$1.2B Construction over 10 years
- 304-Acres
- 3.3M TEU Capacity
- 1.1M On-dock Rail

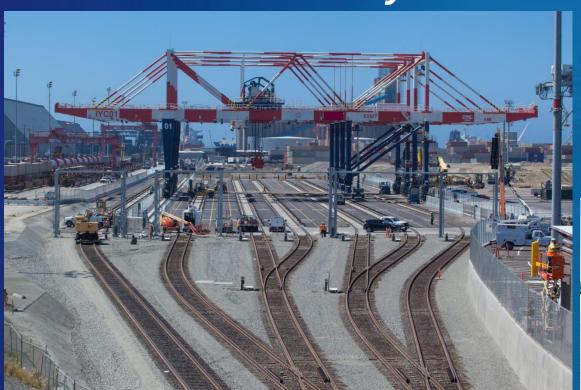
On-dock Environment

- High-Value Property
- Constrained Space
- Longshore Labor
- Railcar Repairs
- Marine Terminal Interface
- Engineering Challenges

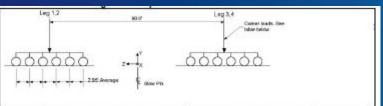


Yard Operations

- Train Arrival
- Secure Train/Yard
- Unload Containers
- Inspect Railcars
- Repair Railcars
- Load Containers
- Build Train
- Train Departure


Facility Layout

- Yard Track Lengths
- Track Spacing
- Work Areas



Safety Features

IY Design

Condition.	I st u-stor I timen Leg rean						SATE OF SHIPE PARKE LAND THE BORN						2000W 1788
	Leg 1			Log3			Leg 2			Leg 4			Each Rail, kips
	X	Y	Z.	X	Y	Z	X	Y	Z	X	Y	2.	Z
	1 (((())	1 100	5 1000	12.1347	200	Kipsi	Corser	20000	1000001	17115-27	10.00	0.024	. 56.0
Operating	32	785	35	32	710	35	60	745	35	60	670	35	
Stowed	12	610		12	390		35	570		35	355		130
EQX (0.3g)	20	905	50	20	675	50	230	710	50	230	580	50	100"
EQZ (0.3g)	10	900	165	10	470	165	70	855	165	70	430	165	330

- Global axes are X Trolley travel direction, Y Vertical, Z Caritry travel direction. X and Z loads reverse. Positive Y load indicates forces down.
- 2. The recommended foundation loads include 20% contingency on the crane dead load, not on trolley and lift system loads.
- 3. Corner leads at Log 1 and Log 3 are concurrent, the leads at Log 2 and Log 4 are also concurrent.
- 4. Not concurrent with Z leads on rails.

Construction Phasing

Terminal Gate Area

PARSONS

Wharf & Automated Waterside Transport Area

Intermodal Yard Area

Automated Stacking Area

Conclusions

WSC Intermodal Yards

- Efficient and Green
- Developing Technology
- Critical Design Issues
- Complex Operations will Benefit from Modeling

Conclusions

Bigger Ships

- Quay Cranes
- Container Yards
- Intermodal Yards
- Landside Transport

